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Measurements of the velocity and vorticity field with a 12-sensor hot-wire probe were carried out
in the boundary layer of the test section ceiling of the NASA Ames 80�120 ft2 wind tunnel at a
turbulence Reynolds number of R��875. Tests of local isotropy were applied to the data obtained
at y /�=0.1. In the inertial subrange, which extended over a decade of wave numbers for this
experiment, both the velocity and vorticity component one-dimensional kx spectra agree well with
the isotropic spectra of Kim and Antonia �J. Fluid Mech. 251, 219 �1993��. This agreement extends
into the dissipation range up to wave numbers at which the accuracy of the measurements is limited
because of spatial resolution and other sources of error. Additional tests of local isotropy, from the
characteristics of the Reynolds shear stress correlation coefficient cospectrum and from the isotropic
relationships between the kx spectra of the streamwise velocity and vorticity components with the kx

spectra of the respective cross-stream components, also show evidence of local isotropy at these
higher wave numbers. © 2008 American Institute of Physics. �DOI: 10.1063/1.3005842�

I. INTRODUCTION

The hypothesis, first advanced by Kolmogorov,1 that tur-
bulence at large wave numbers is isotropic and has universal
spectral characteristics which are independent of the flow
geometry, at least for high Reynolds numbers, has been a
cornerstone of closure theories as well as of the most prom-
ising development in the effort to predict turbulent flows,
viz., large eddy simulations. Experimental measurements of
the velocity field have frequently been made to verify this
fundamental assumption. However, Van Atta2 suggested that
an examination of the scalar and velocity gradient fields is
necessary to definitively verify this hypothesis and to deter-
mine its range of applicability.

Antonia et al.3 showed that the one-dimensional kx spec-
tral densities of the velocity gradients that make up the
vorticity components are related to the energy spectrum ten-
sor by

Ei,m�kx� =� �
−�

�

km
2 Ei�k�dkydkz, �1�

where Ei,m is the spectral density of the respective velocity
gradient components and Ei is the spectral density of the
respective velocity components �i=u, v, or w and m=x, y, or
z�. Only for the special case where the flow is isotropic are
relationships available that allow us to determine the cross-
stream wave number integrals on the right-hand side of Eq.
�1� in terms of the energy magnitude spectrum, E�k�, where
k= �k�. Thus, in general, the one-dimensional kx spectra of the
vorticity components are not derivable from the kx spectra of
the velocity components, and local isotropy of the vorticity
field is therefore not implied by local isotropy of the velocity
field.

Antonia and co-workers3–5 used a hot-wire probe con-
sisting of two X arrays separated in appropriate cross-stream
directions to estimate velocity gradients and their spectra as
well as spectra of vorticity components and dissipation rate
determined from these gradients in a turbulent, self-
preserving wake. They found spectral characteristics consis-
tent with the idea of local isotropy at high wave numbers.
Kim and Antonia6 and Antonia and Kim7 used the direct
numerical simulation �DNS� of a channel flow with a Rey-
nolds number of R�=395 �based on the friction velocity u�

and the channel half-width h� to examine the question of
local isotropy. In spite of the low Reynolds number of the
simulated flow, clear indications from several tests of local
isotropy in both the velocity and vorticity fields were evident
at high wave numbers. They7 also examined databases from
DNS of a homogeneous turbulent shear flow and a turbulent
mixing layer and found local isotropy at high wave numbers
when the mean strain rate was sufficiently small. Morris and
Foss8 compared the spanwise vorticity component spectra
obtained from an experiment in the atmospheric surface
layer at y+�2500 and from a single stream mixing layer to a
model isotropic spectrum. For wave numbers kx��0.1 the
spectra exhibit a kx

−1 power law behavior which is not seen in
the other experiments or DNS cited above.

Saddoughi and Veeravalli9 performed experiments with
single-sensor and small X-array hot-wire probes in the
boundary layer of the upper wall of the NASA Ames 80
�120 ft2 wind tunnel at a streamwise station with a 50 m
fetch for freestream speeds of 10 and 40 m/s. They examined
the local isotropy of the velocity field by means of spectral
relationships and structure function tests and found that it is
attained for all the conditions they tested at �1/2S−3/2kx�10,
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where � is the dissipation rate and kx is the streamwise wave
number.

II. EXPERIMENTAL FACILITY AND INSTRUMENTATION

A. Wind tunnel

Our experiments were performed in parallel with the
low-speed experiments of Saddoughi and Veeravalli9 at the
lower freestream speed of 10 m/s. This speed corresponds to
a momentum thickness Reynolds number of R	�74 000 and
a turbulence Reynolds number of R��875 at y /��0.1, with
the boundary layer thickness ��1.1 m at our measurement
station. Under these conditions the Kolmogorov length scale
is estimated to be ��0.22 mm from our direct measure-
ments of the dissipation rate, ��1.39 m2 s−3. The local
mean velocity at this position in the boundary layer is

Ūlocal�7.0 m /s.
Our experiments were conducted at one of the side view-

ing ports on the ceiling of the wind tunnel, as indicated in
Fig. 1, at approximately 50 m from the end of the contraction
and about 6.6 m from the side wall. The airplane and people
in the photograph of the interior of the tunnel test section
indicate its size, but the tunnel was empty for these experi-
ments. Any large scale anisotropies introduced by corner sec-
ondary flows and the rough wall of this wind tunnel only
create a more stringent test for the local isotropy hypothesis.
Measurements were made with the probe located at y /�
�0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.6 from the ceiling of
the wind tunnel. Only the data at the y /��0.1 location
where the local mean shear rate is largest will be discussed
here. The Reynolds shear stress profile given by Saddoughi
and Veeravalli9 shows that roughness effects are confined to
the region below this location in this rough wall boundary
layer.

B. Multisensor hot-wire probe

The 12-sensor probe used in this investigation and
shown in the photograph of Fig. 2 was constructed and tested
by Vukoslavčević and Wallace.10 It consists of three arrays of
four hot-wire sensors each. The sensors are contained within
a small measuring region of about 2.5 mm diameter in the
cross-stream plane.

1. Data acquisition

The hot-wire sensors were operated in the constant tem-
perature mode at an overheat ratio of 1.2 with an A. A. Lab
Systems 12-channel hot-wire anemometer system. The maxi-
mum sustainable throughput of our Optim Megadac 5017A
data acquisition system was approximately 72 kHz, i.e., 6
kHz per channel when sampling 12 channels simultaneously.
This relatively low sampling frequency could not sufficiently
resolve the expected Kolmogorov frequency range, which
was estimated to be approximately 4.5–5.5 kHz. In order to
overcome this technical limitation, the outputs of the an-
emometer channels were initially analog recorded on FM
tapes at 40 in./s providing a frequency response of approxi-
mately 20 kHz and later digitized individually. This method
required a synchronization signal to be simultaneously re-
corded on the tape in order to uniquely identify a common
trigger time for all the channels. A total of 13 channels �in-
cluding the synchronization channel� was recorded at each
measurement location for recording durations of 180 s.

2. Data reduction

The velocity vector V cooling each sensor can be written
as

V = Unn + Ubb + Utt , �2�

where n, b, and t are unit vectors in the normal, binormal,
and tangential directions with respect to the sensor.
Jorgensen’s11 law expresses the square of the “effective” ve-
locity magnitude cooling the sensor as a weighted sum of the
squares of these components,

FIG. 1. �Color online� Interior of the NASA Ames 80�120 ft2 wind tunnel
test section. Arrow indicates measurement station.

FIG. 2. �Color online� Photograph of the 12-sensor probe of Vukoslavčević
and Wallace �Ref. 10�. Each sensor is 0.5 mm long and is inclined at 45° to
the flow.
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Ue
2 = Un

2 + h2Ub
2 + k2Ut

2, �3�

where the respective weighting factors for the three compo-
nents are unity, h2, and k2. The value of h depends on, among
other influences, the aerodynamic blockage of the flow by
the prongs and is usually close to unity. The value of k de-
pends on the aspect ratio of the sensor, � /d; for the � /d
�200 of the sensors used here, k�0.2.

It is usually more convenient to decompose V into com-
ponents in the laboratory coordinate system,

V = Ui + Vj + Wk , �4�

with unit vectors i, j, and k in the streamwise, wall normal,
and spanwise �x, y, and z� directions, respectively. For an
arbitrary orientation of V, we can relate its two decomposi-
tions given in Eqs. �2� and �4� by

Un = n1U + n2V + n3W , �5�

Ub = b1U + b2V + b3W , �6�

and

Ut = t1U + t2V + t3W , �7�

where the coefficients ni, bi, and ti �i=1–3� can be expressed
in terms of sines and cosines of the angles of inclination of
the sensors to the laboratory coordinate system axes. How-
ever, determining these angles is not necessary because these
coefficients are incorporated into other coefficients that are
determined by calibration, as shown below. If we now sub-
stitute for Un, Ub, and Ut from Eqs. �5�–�7� into Eq. �3�, we
obtain for the jth sensor of a probe array a general expres-
sion for the effective velocity cooling the sensor in terms of
the velocity components in the laboratory coordinate system,

Uej

2 = a1jUj
2 + a2jVj

2 + a3jWj
2 + a4jUjVj + a5jUjWj

+ a6jVjWj , �8�

where the coefficients anj �n=1–6� are products of the ge-
ometry coefficients, ni, bi, and ti, in Eqs. �5�–�7� with the
weighting factors, h and k, in Eq. �3�.

Following Marasli et al.,12 a polynomial in Ej, the volt-
age heating the jth sensor, given by

Uej
= �

m=1

q

AmjE
m−1, �9�

where Amj are the qth-order polynomial coefficients of the
jth sensor, is equated to Uej

2 in Eq. �8� to obtain

Uej

2 = Pj�Ej� = A1j + A2jEj + A3jEj
2 + A4jEj

3 + A5jEj
4. �10�

The coefficients anj in Eq. �8� and Amj in Eq. �10� for each
sensor are determined by calibration.

Because of the spatial variation in the velocity field, for
any multisensor probe, the velocity components, Uj, Vj, and
Wj, that cool each of the j sensors are different. Assuming
that the gradients are constant within the probe measuring
region at a given instant, the velocity components occurring
at the midpoint of each sensor can be estimated from a Tay-
lor series expansion to first order. This expansion about the
geometric center of the probe in the cross-stream plane per-
pendicular to the probe axis and passing through the center
of each sensor gives

Uj = Uo + Cj
�U

�y
+ Dj

�U

�z
, �11�

Vj = Vo + Cj
�V

�y
+ Dj

�V

�z
, �12�

and

Wj = Wo + Cj
�W

�y
+ Dj

�W

�z
. �13�

The coefficients Cj and Dj �j=1–12� represent the spanwise
and vertical displacements, which must be accurately mea-
sured, of the centers of each of the sensors from the probe
geometric center, and the velocity components, Uo, Vo, and
Wo, are those at the probe geometric center. Substituting Eqs.
�11� and �12� into Eq. �8� and neglecting gradient product
terms, then replacing Uej

2 with this expression in Eq. �10� and
rearranging yields 12 nonlinear algebraic equations with nine
unknowns: the three velocity components, Uo, Vo, and Wo,
and the six velocity gradients in the cross-stream plane,
�U /�y, �V /�y, �W /�y, �U /�z, �V /�z, and �W /�z. These 12
equations �j=1–12� can be expressed as

f j 	 − Pj + Uo
2 + 2CjUo

�U

�y
+ 2DjUo

�U

�z
− k2j
Vo

2 + 2CjVo
�V

�y
+ 2DjVo

�V

�z
� − k3j
Wo

2 + 2CjWo
�W

�y
+ 2DjWo

�W

�z
�

− k4j
UoVo + Cj�Uo
�V

�y
+ Vo

�U

�y
 + Dj�Uo

�V

�z
+ Vo

�U

�z
� − k5j
UoWo + Cj�Uo

�W

�y
+ Wo

�U

�y
 + Dj�Uo

�W

�z
+ Wo

�U

�z
�

− k6j
VoWo + Cj�Vo
�W

�y
+ Wo

�V

�y
 + Dj�Vo

�W

�z
+ Wo

�V

�z
� = 0, �14�

where knj =anj /a1j �n=2–6�.
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Equation �14� is solved at each time step by minimizing
the error function given by �f j

2 �j=1–12� using Newton’s
method. The streamwise gradients must be determined by
transforming time derivatives into derivatives in the x direc-
tion using Taylor’s13 hypothesis. Its validity for bounded
flows has been studied by Piomelli et al.,14 who found that it
provides good estimates of streamwise gradients this far
from the bounding wall.

The underlying assumption of the first-order Taylor ex-
pansion about the probe geometric center is that the velocity
gradient field is constant across the probe at any measure-
ment instant. This is a reasonable assumption provided the
smallest scales of the turbulent flow being measured are
similar to or larger than the measuring volume of the 12-
sensor probe. The spatial resolution of the 12-sensor probe
was estimated to be about 10�, so some attenuation in the
velocity gradient measurements occurs due to the breakdown
of this assumption about the linear variation in the velocity
field across the sensors.

III. RESULTS

A. Velocity and vorticity component spectra

The one-dimensional energy spectrum of the streamwise
velocity component, Eu�kx��, calculated from this experi-
ment and normalized with the Kolgomorov velocity and
length scales, uk	�
��1/4 and �	�
3 /��1/4, is shown in Fig.

3�a�. Our Eu spectrum is compared to that of Saddoughi and
Veeravalli9 from measurements in the same wind tunnel
under almost the same flow conditions. The experiments
were carried out simultaneously but at different spanwise
locations in the wind tunnel. For these experiments, over a
decade of inertial subrange is evident. Our spectrum is also
compared to that from the channel flow DNS of Kim and
Antonia.6 For this simulation, R�=53 at the channel center-
line where the spectrum shown was calculated. Compared as
well is the one-dimensional isotropic spectrum calculated by
Kim and Antonia6 from the full three-dimensional spectrum
as given by

Eu�kx� =
1

2
�

kx

� E�k�
k

�1 −
kx

2

k2dk . �15�

As Kim and Antonia6 found for their channel flow DNS
Eu�kx� spectrum, our spectrum agrees with the calculated iso-
tropic spectrum in the inertial subrange where there is over-
lap, as does that of Saddoughi and Veeravalli.9 In the dissi-
pation range the agreement continues to be good until the
spectral density from our probe, which is considerably larger
than that of the single-sensor probe of Saddoughi and
Veeravalli,9 begins to show a little attenuation for kx��0.2.
At kx��0.5, aliasing and electronic noise cause our experi-
mental spectrum to turn up.

The one-dimensional energy spectra from our experi-
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FIG. 3. �Color online� Velocity spectra: �a� streamwise component; �b� wall normal component; �c� spanwise component. �——� Present data; �—·—�
Saddoughi and Veeravalli �Ref. 9�; �¯� channel flow DNS, Kim and Antonia �Ref. 6�; �---� isotropic calculation from Eqs. �15� and �16�, Kim and Antonia
�Ref. 6�. Vertical dotted line here and in other figures indicates the probe scale.
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ment and the DNS of Kim and Antonia6 of the wall normal
and spanwise velocity components Ev�kx�� and Ew�kx��,
normalized with Kolmogorov scaling, are shown in Figs.
3�b� and 3�c�. They are compared to the isotropic spectrum
calculated by Kim and Antonia6 using the DNS from the
relationship

Ev�kx� = Ew�kx� =
1

2
�

kx

� E�k�
k

�1 +
kx

2

k2dk . �16�

As for the streamwise velocity component, our measured
spectra of the wall normal and spanwise components agree
well with the DNS channel flow spectra of Kim and Antonia6

and their isotropic calculation in the inertial range where
there is overlap, as well as in the dissipation range for kx�
�0.2.

Similar to our streamwise velocity component spectrum,
these cross-stream velocity component spectra display a little
attenuation for kx��0.2 in the dissipation range and turn
upward at kx��0.5. The wave number kx��0.63, corre-

sponding to the largest dimension over which gradients are
estimated with the probe, i.e., 2.2 mm, is indicated in the
figure as a vertical dotted line.

A sensitive test of local isotropy is the cospectrum of the
Reynolds shear stress correlation coefficient,

Ruv =
− Euv�kx�

�Eu�kx�Ev�kx��1/2 , �17�

where �0
�Euv�kx�dkx=−uv. In the wave number range where

the flow is locally isotropic, Ruv must go to zero. Figure 4
shows the shear stress cospectrum measured with our 12-
sensor probe compared to that of Saddoughi and Veeravalli.9

The agreement is excellent. Both spectra go to zero at kx�
�0.1, i.e., at the beginning of the dissipation range, which,
for this location in the flow, is a nondimensional wave num-
ber based on the local mean shear rate of �1/2S−3/2kx�5,

where S=dŪ /dy. For kx��0.2 our data drop below zero
because of the measurement issues mentioned above.

With the data obtained in this experiment the one-
dimensional spectra of the vorticity components could be
obtained. These are shown in Figs. 5�a�–5�c�. They are com-
pared to the spectra obtained from the channel flow DNS of
Kim and Antonia6 and to their calculated isotropic spectra of
the vorticity components using the relationships

E�x
�kx� =

1

2
�

kx

� E�k�
k

�k2 − kx
2�dk �18�

and

E�y
�kx� = E�z

�kx�

=
1

2
kx

2�
kx

� E�k�
k

dk +
1

4
�

kx

� E�k�
k

�k2 − kx
2�dk �19�

or, equivalently,
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FIG. 4. �Color online� Reynolds shear stress cospectrum: ��� Saddoughi
and Veeravalli �Ref. 9�; ��, red online� present data.
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FIG. 5. �Color online� Vorticity spectra: �a� streamwise component; �b� wall normal component; �c� spanwise component. �——� Present data; �¯� channel
flow, Kim and Antonia �Ref. 6�; �---� isotropic calculations from Eqs. �18� and �19�, Kim and Antonia �Ref. 6�.
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E�y
�kx� = E�z

�kx� =
1

4
�

kx

� E�k�
k

�k2 + kx
2�dk , �20�

as given by Antonia et al.4 Our measured vorticity compo-
nent spectra, those from the DNS of Kim and Antonia,6 and
their calculated isotropic spectra all agree quite well within
the inertial subrange where there is overlap, the high wave
number end of which is at kx��0.1 �see Fig. 3�a��. In the
dissipation range for kx��0.2 the energy in our spectra falls
off more rapidly than in both the DNS and calculated isotro-
pic spectra. This is due to probe spatial resolution effects and
the fact that our velocity gradient approximation is a first-
order finite difference, whereas the DNS is a spectral calcu-
lation. This fall off is more pronounced for the wall normal
and spanwise components of vorticity and is most likely due
to the fact that these components rely on Taylor’s hypothesis
for the determination of gradients in the streamwise direc-
tion.

B. Further tests of local isotropy of the vorticity field

The isotropic spectral relationship between the vorticity
components,

E�y
�kx� = E�z

�kx� = 1/2�E�x
�kx� − kxdE�x

�kx�/dkx� , �21�

analogous to that for the velocity components, can be easily
shown from Eqs. �18�–�20�; it is also implied because, like
the velocity field, the vorticity field is solenoidal for incom-
pressible flow. This relationship requires that, in a wave
number range that is locally isotropic, the ratio of E�i

calc, from
Eq. �21�, to E�i

meas, obtained from direct measurements, must
be equal to unity. Here i=y or z. To determine this ratio from
our experimental data, the derivative in Eq. �21� was ob-
tained by differentiating a curve fitted through the E�x

�kx�
spectrum.

Figure 6 shows this ratio of the calculated cross-stream
spectral density values of the vorticity components to their
respective measured values. It is apparent that the vorticity
field clearly tends toward isotropy near the beginning of the
inertial subrange for our data at kx��0.01. The spanwise
component approaches the isotropic value of unity at a
slightly lower wave number than the wall normal compo-
nent. Departure from the isotropic value begins at kx��0.1,

which is at about the start of the dissipation range. This
departure apparently results from the somewhat more rapid
roll-off of the E�y

and E�z
spectra compared to the E�x

spec-
trum in the dissipation range, as seen in Figs. 5�a�–5�c�.

From Eq. �21� it is also clear that, in the wave number
range where local isotropy holds, the ratios of the measured
cross-stream vorticity component spectra, E�y

meas /E�z

meas, must
also equal unity. This spectral ratio is shown in Fig. 7. In-
deed, the ratio is nearly unity in the inertial subrange. It is
also near unity in the dissipation range, but because of the
measurement problems noted earlier, the results there are
inconclusive.

IV. CONCLUSIONS

A unique experiment to simultaneously measure the ve-
locity vector and the velocity gradient tensor in a very high
Reynolds number boundary layer flow was performed in the
NASA Ames 80�120 ft2 wind tunnel. At the measurement
location closest to the wall, y /��0.1, where the anisotropy
of the flow is greatest, both the velocity and vorticity fields
exhibit clear indications of local isotropy within the inertial
subrange, beginning at kx��0.01, and within the dissipation
range up to a nondimensional wave number of kx��0.2
where the probe’s inadequate spatial resolution, reliance on a
first-order finite difference approximation of the local veloc-
ity gradients, and noise and aliasing distort the data. This
lower wave number limit for local isotropy is in good quan-
titative agreement with the streamwise velocity field results
of Saddoughi and Veeravalli9 from measurements obtained
simultaneously at the same y /� location but along the cen-
terline of the tunnel test section.

Our velocity component spectra show good agreement
with those of Kim and Antonia6 from their DNS turbulent
channel flow database and with their calculated isotropic
spectra in the inertial subrange where there is overlap and
into the dissipation range of wave numbers up to kx��0.2.
Similar good agreement is found for the vorticity component
spectra in the inertial subrange and into the dissipation range
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until the measurement limitations mentioned above distort
the spectra.

The Reynolds shear stress cospectrum measured with
our 12-sensor probe is in very good agreement with that of
Saddoughi and Veeravalli.9 Local isotropy is obtained for a
nondimensional mean shear rate of �1/2S−3/2kx�5.

Further tests of local isotropy were done using the ratio
of the calculated �from the one-dimensional E�x

�kx� spec-
trum� cross-stream vorticity spectra values of E�y

�kx� and
E�z

�kx� to their measured values and using the ratio of their
measured values themselves. These tests indicate that the
vorticity field is locally isotropic in the inertial subrange and
in the dissipation range, at least up to the highest wave num-
bers that the measurements with the probe used in this ex-
periment can be considered resolved and reliable.
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